Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato.

Identifieur interne : 002237 ( Main/Exploration ); précédent : 002236; suivant : 002238

A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato.

Auteurs : Miaoying Tian [États-Unis] ; Brett Benedetti ; Sophien Kamoun

Source :

RBID : pubmed:15980196

Descripteurs français

English descriptors

Abstract

The plant apoplast forms a protease-rich environment in which proteases are integral components of the plant defense response. Plant pathogenic oomycetes, such as the potato (Solanum tuberosum) and tomato (Lycopersicon esculentum) pathogen Phytophthora infestans, secrete a diverse family of serine protease inhibitors of the Kazal family. Among these, the two-domain EPI1 protein was shown to inhibit and interact with the pathogenesis-related protein P69B subtilase of tomato and was implicated in counter-defense. Here, we describe and functionally characterize a second extracellular protease inhibitor, EPI10, from P. infestans. EPI10 contains three Kazal-like domains, one of which was predicted to be an efficient inhibitor of subtilisin A by an additivity-based sequence to reactivity algorithm (Laskowski algorithm). The epi10 gene was up-regulated during infection of tomato, suggesting a potential role during pathogenesis. Recombinant EPI10 specifically inhibited subtilisin A among the major serine proteases, and inhibited and interacted with P69B subtilase of tomato. The finding that P. infestans evolved two distinct and structurally divergent protease inhibitors to target the same plant protease suggests that inhibition of P69B could be an important infection mechanism for this pathogen.

DOI: 10.1104/pp.105.061226
PubMed: 15980196
PubMed Central: PMC1176446


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato.</title>
<author>
<name sortKey="Tian, Miaoying" sort="Tian, Miaoying" uniqKey="Tian M" first="Miaoying" last="Tian">Miaoying Tian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691</wicri:regionArea>
<wicri:noRegion>Ohio 44691</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Benedetti, Brett" sort="Benedetti, Brett" uniqKey="Benedetti B" first="Brett" last="Benedetti">Brett Benedetti</name>
</author>
<author>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15980196</idno>
<idno type="pmid">15980196</idno>
<idno type="doi">10.1104/pp.105.061226</idno>
<idno type="pmc">PMC1176446</idno>
<idno type="wicri:Area/Main/Corpus">002256</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002256</idno>
<idno type="wicri:Area/Main/Curation">002256</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002256</idno>
<idno type="wicri:Area/Main/Exploration">002256</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato.</title>
<author>
<name sortKey="Tian, Miaoying" sort="Tian, Miaoying" uniqKey="Tian M" first="Miaoying" last="Tian">Miaoying Tian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691</wicri:regionArea>
<wicri:noRegion>Ohio 44691</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Benedetti, Brett" sort="Benedetti, Brett" uniqKey="Benedetti B" first="Brett" last="Benedetti">Brett Benedetti</name>
</author>
<author>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Base Sequence (MeSH)</term>
<term>Chymotrypsin (metabolism)</term>
<term>DNA Primers (MeSH)</term>
<term>Lycopersicon esculentum (microbiology)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Peptide Hydrolases (chemistry)</term>
<term>Peptide Hydrolases (genetics)</term>
<term>Peptide Hydrolases (metabolism)</term>
<term>Phytophthora (chemistry)</term>
<term>Phytophthora (pathogenicity)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Proteins (antagonists & inhibitors)</term>
<term>Plant Proteins (chemistry)</term>
<term>Restriction Mapping (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Subtilisins (antagonists & inhibitors)</term>
<term>Trypsin (metabolism)</term>
<term>Trypsin Inhibitor, Kazal Pancreatic (isolation & purification)</term>
<term>Trypsin Inhibitor, Kazal Pancreatic (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Amorces ADN (MeSH)</term>
<term>Cartographie de restriction (MeSH)</term>
<term>Chymotrypsine (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Inhibiteur de la trypsine pancréatique Kazal (isolement et purification)</term>
<term>Inhibiteur de la trypsine pancréatique Kazal (pharmacologie)</term>
<term>Lycopersicon esculentum (microbiologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Peptide hydrolases (composition chimique)</term>
<term>Peptide hydrolases (génétique)</term>
<term>Peptide hydrolases (métabolisme)</term>
<term>Phytophthora (composition chimique)</term>
<term>Phytophthora (pathogénicité)</term>
<term>Protéines végétales (antagonistes et inhibiteurs)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Subtilisines (antagonistes et inhibiteurs)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Trypsine (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Plant Proteins</term>
<term>Subtilisins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peptide Hydrolases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Peptide Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Trypsin Inhibitor, Kazal Pancreatic</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chymotrypsin</term>
<term>Peptide Hydrolases</term>
<term>Trypsin</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Protéines végétales</term>
<term>Subtilisines</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Peptide hydrolases</term>
<term>Phytophthora</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Peptide hydrolases</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Inhibiteur de la trypsine pancréatique Kazal</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Lycopersicon esculentum</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Lycopersicon esculentum</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chymotrypsine</term>
<term>Peptide hydrolases</term>
<term>Trypsine</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Inhibiteur de la trypsine pancréatique Kazal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Trypsin Inhibitor, Kazal Pancreatic</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>DNA Primers</term>
<term>Molecular Sequence Data</term>
<term>Restriction Mapping</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Amorces ADN</term>
<term>Cartographie de restriction</term>
<term>Données de séquences moléculaires</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The plant apoplast forms a protease-rich environment in which proteases are integral components of the plant defense response. Plant pathogenic oomycetes, such as the potato (Solanum tuberosum) and tomato (Lycopersicon esculentum) pathogen Phytophthora infestans, secrete a diverse family of serine protease inhibitors of the Kazal family. Among these, the two-domain EPI1 protein was shown to inhibit and interact with the pathogenesis-related protein P69B subtilase of tomato and was implicated in counter-defense. Here, we describe and functionally characterize a second extracellular protease inhibitor, EPI10, from P. infestans. EPI10 contains three Kazal-like domains, one of which was predicted to be an efficient inhibitor of subtilisin A by an additivity-based sequence to reactivity algorithm (Laskowski algorithm). The epi10 gene was up-regulated during infection of tomato, suggesting a potential role during pathogenesis. Recombinant EPI10 specifically inhibited subtilisin A among the major serine proteases, and inhibited and interacted with P69B subtilase of tomato. The finding that P. infestans evolved two distinct and structurally divergent protease inhibitors to target the same plant protease suggests that inhibition of P69B could be an important infection mechanism for this pathogen.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15980196</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>10</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>138</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2005</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato.</ArticleTitle>
<Pagination>
<MedlinePgn>1785-93</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The plant apoplast forms a protease-rich environment in which proteases are integral components of the plant defense response. Plant pathogenic oomycetes, such as the potato (Solanum tuberosum) and tomato (Lycopersicon esculentum) pathogen Phytophthora infestans, secrete a diverse family of serine protease inhibitors of the Kazal family. Among these, the two-domain EPI1 protein was shown to inhibit and interact with the pathogenesis-related protein P69B subtilase of tomato and was implicated in counter-defense. Here, we describe and functionally characterize a second extracellular protease inhibitor, EPI10, from P. infestans. EPI10 contains three Kazal-like domains, one of which was predicted to be an efficient inhibitor of subtilisin A by an additivity-based sequence to reactivity algorithm (Laskowski algorithm). The epi10 gene was up-regulated during infection of tomato, suggesting a potential role during pathogenesis. Recombinant EPI10 specifically inhibited subtilisin A among the major serine proteases, and inhibited and interacted with P69B subtilase of tomato. The finding that P. infestans evolved two distinct and structurally divergent protease inhibitors to target the same plant protease suggests that inhibition of P69B could be an important infection mechanism for this pathogen.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Miaoying</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Benedetti</LastName>
<ForeName>Brett</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kamoun</LastName>
<ForeName>Sophien</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>06</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>50936-63-5</RegistryNumber>
<NameOfSubstance UI="D014359">Trypsin Inhibitor, Kazal Pancreatic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010447">Peptide Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="D013381">Subtilisins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.1</RegistryNumber>
<NameOfSubstance UI="D002918">Chymotrypsin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.4</RegistryNumber>
<NameOfSubstance UI="D014357">Trypsin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002918" MajorTopicYN="N">Chymotrypsin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018551" MajorTopicYN="N">Lycopersicon esculentum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010447" MajorTopicYN="N">Peptide Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015183" MajorTopicYN="N">Restriction Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013381" MajorTopicYN="N">Subtilisins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014357" MajorTopicYN="N">Trypsin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014359" MajorTopicYN="N">Trypsin Inhibitor, Kazal Pancreatic</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>10</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15980196</ArticleId>
<ArticleId IdType="pii">pp.105.061226</ArticleId>
<ArticleId IdType="doi">10.1104/pp.105.061226</ArticleId>
<ArticleId IdType="pmc">PMC1176446</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Genet. 2002 Mar;40(6):385-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2004 Feb;32(2):199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14698633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2004 May;35(1):93-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15039071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1997 Jan;10(1):13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9002268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Apr 8;42(13):3874-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12667078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 26;296(5568):744-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11976458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 18;279(25):26370-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2002 Nov;4(13):1369-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12443902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Mar;33(5):949-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jun 15;266(17):10727-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1674942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2004 Apr 15;803(1):75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15026000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jul 30;274(31):21499-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10419450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2002 Jun;34(6):573-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11943586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Apr 25;262(12):5899-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3571241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jul 16;340(4):783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15223320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1980;49:593-626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6996568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1987 Jan 13;26(1):202-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3828298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2004 Sep;34(9):971-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15350616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Jul;13(7):1675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12840044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1410-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11171964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jan;122(1):67-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10631250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Mar 7;1477(1-2):324-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10708867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Jul;40(4):711-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10480394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2001 Sep 1;2(5):257-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Sep;10(9):1413-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1983 Sep 13;22(19):4420-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6414511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Jan;65(1):43-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14697270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Mar;39(4):749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10350089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Mar;77(3):642-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Parasitol. 1998 Jan;28(1):11-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9504331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Nov;36(4):485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pest Manag Sci. 2002 Sep;58(9):944-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12233186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2000 Apr 15;107(2):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10779600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jan 22;274(4):2360-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9891003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Feb 25;23(4):980-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14765119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1981 Mar 27;211(4489):1437-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6162199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Parasitol. 2004 May;34(6):693-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15111091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 May 30;272(22):14412-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9162080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2003 Apr;2(2):191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2002 May;121(2):283-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12034464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Feb 21;266(2):441-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9047374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 Jul 15;223(2):389-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8055907</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Benedetti, Brett" sort="Benedetti, Brett" uniqKey="Benedetti B" first="Brett" last="Benedetti">Brett Benedetti</name>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Tian, Miaoying" sort="Tian, Miaoying" uniqKey="Tian M" first="Miaoying" last="Tian">Miaoying Tian</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002237 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002237 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15980196
   |texte=   A Second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15980196" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024